Future of machine learning in geotechnics
Author:
Affiliation:
1. Information Systems Technology and Design/Architecture and Sustainable Design, Singapore University of Technology and Design, Singapore, Singapore
2. School of Civil Engineering, Chongqing University, Chongqing, People’s Republic of China
Publisher
Informa UK Limited
Subject
Geology,Geotechnical Engineering and Engineering Geology,Safety, Risk, Reliability and Quality,Building and Construction,Civil and Structural Engineering
Link
https://www.tandfonline.com/doi/pdf/10.1080/17499518.2022.2087884
Reference77 articles.
1. Abubakar, A., M. J. Brædstrup, H. Di, A. T. Diaz, S. Freeman, S. Hviid, K. H. Karkov, et al. 2021. Deep Learning Applications for Wind Farms Site Characterization and Monitoring. SEG Technical Program Expanded Abstracts, 3009-3013.
2. American Society of Civil Engineers. 2019. Future World Vision: Infrastructure Reimagined. https://cdn.asce.org/fwv/files/pdfs/asce-future-world-vision-final-report-updated-may-2019.pdf
3. Geotechnical BIM in 2020
4. Image-Data-Driven Slope Stability Analysis for Preventing Landslides Using Deep Learning
5. The implementation and role of geotechnical data in BIM process
Cited by 120 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Book Review;Underground Space;2024-12
2. Uncertainties in landslide susceptibility prediction modeling: A review on the incompleteness of landslide inventory and its influence rules;GEOSCI FRONT;2024
3. Predicting the strut forces of the steel supporting structure of deep excavation considering various factors by machine learning methods;Underground Space;2024-10
4. Identification of anomaly of tunnel segment strain using an adaptive machine learning model;Georisk: Assessment and Management of Risk for Engineered Systems and Geohazards;2024-08-27
5. A novel tool for probabilistic modeling of liquefaction behavior in alluvial soil;Georisk: Assessment and Management of Risk for Engineered Systems and Geohazards;2024-08-27
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3