Deep learning applications for wind farms site characterization and monitoring
Author:
Affiliation:
1. Schlumberger
2. Ørsted Wind Power A/S
Publisher
Society of Exploration Geophysicists
Link
https://library.seg.org/doi/pdf/10.1190/segam2021-3583026.1
Reference7 articles.
1. Bertossa, A. D., J. R. Geear, A. B. Hart, and J. Pitel, 2019, An integrated assessment of the ground conditions for foundations design at St-Brieuc Offshore Windfarm: XVII European Conference on Soil Mechanics and Geotechnical Engineering, 704, doi: 10.32075/17ECSMGE-2019-0704.
2. Semi-supervised seismic and well log integration for reservoir property estimation
3. Seismic stratigraphy interpretation by deep convolutional neural networks: A semisupervised workflow
4. Stothetic CPTS from Intelligent Ground Models Based on the Integration of Geology, Geotectoics and Geophysics as a Tool for Conceptual Foundation Design and Soil Investigation Planning
5. Geological and geotechnical characterisation for offshore wind turbine foundations: A case study of the Sheringham Shoal wind farm
Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Future of Machine Learning in Geotechnics (FOMLIG), 5–6 Dec 2023, Okayama, Japan;Georisk: Assessment and Management of Risk for Engineered Systems and Geohazards;2024-01-02
2. Scaling the “Memory Wall” for Multi-Dimensional Seismic Processing with Algebraic Compression on Cerebras CS-2 Systems;Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis;2023-11-11
3. Semi-Supervised Learning for Geotechnical Soil Property Estimation in Offshore Windfarm Sites;Day 1 Mon, October 31, 2022;2022-10-31
4. Integration of Deep-Learning-Based Flash Calculation Model to Reservoir Simulator;Day 3 Wed, November 02, 2022;2022-10-31
5. Exploring to discover — Thoughts on our exploration geophysics ‘road ahead’;Second International Meeting for Applied Geoscience & Energy;2022-08-15
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3