Selection of Most Relevant Input Parameters Using Principle Component Analysis for Extreme Learning Machine Based Power Transformer Fault Diagnosis Model
Author:
Affiliation:
1. Instrumentation and Control Engineering Department, NSIT Delhi, New Delhi, India
2. Electrical Engineering Department, IIT Delhi, New Delhi, India
Publisher
Informa UK Limited
Subject
Electrical and Electronic Engineering,Mechanical Engineering,Energy Engineering and Power Technology
Link
https://www.tandfonline.com/doi/pdf/10.1080/15325008.2017.1338794
Reference57 articles.
1. Condition Monitoring of Power Transformers - Bibliography Survey
2. Asset management techniques for transformers
3. A review of faults detectable by gas-in-oil analysis in transformers
4. Asset-Management of Transformers Based on Condition Monitoring and Standard Diagnosis [Feature Article]
5. Dissolved gas analysis technique for incipient fault diagnosis in power transformers: A bibliographic survey
Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Research on a Transformer Vibration Fault Diagnosis Method Based on Time-Shift Multiscale Increment Entropy and CatBoost;Entropy;2024-08-23
2. Deep Machine Learning-Based Asset Management Approach for Oil- Immersed Power Transformers Using Dissolved Gas Analysis;IEEE Access;2024
3. Editorial: Renewable Power for Sustainable Growth;Lecture Notes in Electrical Engineering;2024
4. Data Reliability Analysis for Early Fault Diagnosis of Air Handling Unit (AHU);Lecture Notes in Electrical Engineering;2024
5. Fault detection and diagnosis in power transformers: a comprehensive review and classification of publications and methods;Electric Power Systems Research;2022-08
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3