Research on a Transformer Vibration Fault Diagnosis Method Based on Time-Shift Multiscale Increment Entropy and CatBoost

Author:

Shang Haikun1ORCID,Huang Tao1,Wang Zhiming1,Li Jiawen1,Zhang Shen1

Affiliation:

1. Key Laboratory of Modern Power System Simulation and Control & Renewable Energy Technology, Ministry of Education, Northeast Electric Power University, Jilin 132012, China

Abstract

A mechanical vibration fault diagnosis is a key means of ensuring the safe and stable operation of transformers. To achieve an accurate diagnosis of transformer vibration faults, this paper proposes a novel fault diagnosis method based on time-shift multiscale increment entropy (TSMIE) combined with CatBoost. Firstly, inspired by the concept of a time shift, TSMIE was proposed. TSMIE effectively solves the problem of the information loss caused by the coarse-graining process of traditional multiscale entropy. Secondly, the TSMIE of transformer vibration signals under different operating conditions was extracted as fault features. Finally, the features were sent into the CatBoost model for pattern recognition. Compared with different models, the simulation and experimental results showed that the proposed model had a higher diagnostic accuracy and stability, and this provides a new tool for transformer vibration fault diagnoses.

Funder

Natural Science Foundation of Jilin Province

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3