Efficient predictions of cytotoxicity of TiO2-based multi-component nanoparticles using a machine learning-based q-RASAR approach
Author:
Affiliation:
1. Drug Theoretics and Cheminformatics Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
2. Chemometrics & Molecular Modeling Laboratory, Department of Chemistry, Kean University, Union, NJ, USA
Funder
Life Science Research Board, DRDO, New Delhi, India
Publisher
Informa UK Limited
Subject
Toxicology,Biomedical Engineering
Link
https://www.tandfonline.com/doi/pdf/10.1080/17435390.2023.2186280
Reference33 articles.
1. PLGA nanoparticles containing various anticancer agents and tumour delivery by EPR effect
2. Quantitative predictions from chemical read-across and their confidence measures
3. Quick and efficient quantitative predictions of androgen receptor binding affinity for screening Endocrine Disruptor Chemicals using 2D-QSAR and Chemical Read-Across
4. First report of q-RASAR modeling toward an approach of easy interpretability and efficient transferability
Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Introducing third-generation periodic table descriptors for nano-qRASTR modeling of zebrafish toxicity of metal oxide nanoparticles;Beilstein Journal of Nanotechnology;2024-09-10
2. Molecular similarity in chemical informatics and predictive toxicity modeling: from quantitative read-across (q-RA) to quantitative read-across structure–activity relationship (q-RASAR) with the application of machine learning;Critical Reviews in Toxicology;2024-09-03
3. How safe are wild-caught salmons exposed to various industrial chemicals? First ever in silico models for salmon toxicity data gaps filling;Journal of Hazardous Materials;2024-09
4. From molecular descriptors to the developmental toxicity prediction of pesticides/veterinary drugs/bio-pesticides against zebrafish embryo: Dual computational toxicological approaches for prioritization;Journal of Hazardous Materials;2024-09
5. Application of Machine Learning in Nanotoxicology: A Critical Review and Perspective;Environmental Science & Technology;2024-08-07
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3