Quality assessment of building footprint data using a deep autoencoder network
Author:
Affiliation:
1. Department of Information Engineering, China University of Geosciences, Wuhan, China
2. National Engineering Research Center of Geographic Information System, Wuhan, China
Funder
National Natural Science Foundation of China
Hubei Natural Science Foundation of China
Fundamental Research Funds for the Central Universities, China University of Geosciences (Wuhan)
Publisher
Informa UK Limited
Subject
Library and Information Sciences,Geography, Planning and Development,Information Systems
Link
https://www.tandfonline.com/doi/pdf/10.1080/13658816.2017.1341632
Reference36 articles.
1. Assessing similarity matching for possible integration of feature classifications of geospatial data from official and informal sources
2. Data Quality Assurance for Volunteered Geographic Information
3. An, X., 2011. Research on Theory, Methods and Applications of Geometry Similarity Measurement for Spatial Data. Thesis (DSc). PLA Information Engineering University.
4. Learning Deep Architectures for AI
5. Continuous restricted Boltzmann machine with an implementable training algorithm
Cited by 46 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Enhanced large-scale building extraction evaluation: developing a two-level framework using proxy data and building matching;European Journal of Remote Sensing;2024-07-03
2. Research on multiscale OpenStreetMap in China: data quality assessment with EWM-TOPSIS and GDP modeling;Geo-spatial Information Science;2024-06-10
3. Matching the building footprints of different vector spatial datasets at a similar scale based on one-class support vector machines;International Journal of Geographical Information Science;2024-05-16
4. A new commercial boundary dataset for metropolitan areas in the USA and Canada, built from open data;Scientific Data;2024-04-24
5. Building rooftop extraction from aerial imagery using low complexity UNet variant models;Journal of Spatial Science;2024-02-06
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3