Indole-3-acetic acid-induced oxidative burst and an increase in cytosolic calcium ion concentration in rice suspension culture

Author:

Nguyen Hieu T H1,Umemura Kenji2,Kawano Tomonori134

Affiliation:

1. Laboratory of Chemical Biology and Bioengineering, Graduate School and Faculty of Environmental Engineering, The University of Kitakyushu, Kitakyushu, Japan

2. Agricultural & Veterinary Research Laboratories, Meiji Seika Pharma Co., Ltd., Yokohama, Japan

3. University of Florence LINV Kitakyushu Research Center (LINV@Kitakyushu), Kitakyushu, Japan

4. Univ. Paris-Diderot, Sorbonne Paris Cité, Paris 7 Interdisciplinary Energy Research Institute (PIERI), Paris, France

Abstract

Abstract Indole-3-acetic acid (IAA) is the major natural auxin involved in the regulation of a variety of growth and developmental processes such as division, elongation, and polarity determination in growing plant cells. It has been shown that dividing and/or elongating plant cells accompanies the generation of reactive oxygen species (ROS) and a number of reports have suggested that hormonal actions can be mediated by ROS through ROS-mediated opening of ion channels. Here, we surveyed the link between the action of IAA, oxidative burst, and calcium channel activation in a transgenic cells of rice expressing aequorin in the cytosol. Application of IAA to the cells induced a rapid and transient generation of superoxide which was followed by a transient increase in cytosolic Ca2+ concentration ([Ca2+]c). The IAA-induced [Ca2+]c elevation was inhibited by Ca2+ channel blockers and a Ca2+ chelator. Furthermore, ROS scavengers effectively blocked the action of IAA on [Ca2+]c elevation.

Funder

Regional Innovation Cluster Program implemented by Ministry of Education, Culture, Sports, Science and Technology

Publisher

Oxford University Press (OUP)

Subject

Organic Chemistry,Molecular Biology,Applied Microbiology and Biotechnology,General Medicine,Biochemistry,Analytical Chemistry,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3