Contribution of Magnetic Resonance Microscopy in the 12-Week Neurotoxicity Evaluation of Carbonyl Sulfide in Fischer 344 Rats

Author:

Sills Robert C.1,Morgan Daniel L.2,Herr David W.3,Little Peter B.4,George Nneka M.5,Thai Vu Ton 5,Love Nancy E.6,Maronpot Robert R.5,Johnson G. Allan7

Affiliation:

1. Laboratory of Experimental Pathology,

2. Laboratory of Molecular Toxicology, NIEHS, Research Triangle Park, North Carolina 27709, USA

3. Neurotoxicology Division, ORD/NHEERL, U.S. EPA, Research Triangle Park, North Carolina 27711, USA

4. Pathology Associates, Division of Charles River Laboratories, Durham, North Carolina 27713, USA

5. Laboratory of Experimental Pathology

6. Veterinary Centers of America

7. Center for In Vivo Microscopy, Duke University Medical Center, Durham, North Carolina 27701, USA

Abstract

In this carbonyl sulfide (COS) study, magnetic resonance microscopy (MRM) and detailed light microscopic evaluation effectively functioned in parallel to assure that the distribution and degree of pathology in the brain was accurately represented. MRM is a powerful imaging modality that allows for excellent identification of neuroanatomical structures coupled with the ability to acquire 200 or more cross-sectional images of the brain, and the ability to display them in multiple planes. F344 rats were exposed to 200—600 ppm COS for up to 12 weeks. Prior to MRM, rats were anesthetized and cardiac perfused with McDowell Trump's fixative containing a gadolinium MR contrast medium. Fixed specimens were scanned at the Duke Center for In Vivo Microscopy on a 9.4 Tesla magnetic resonance system adapted explicitly for microscopic imaging. An advantage of MRM in this study was the ability to identify lesions in rats that appeared clinically normal prior to sacrifice and the opportunity to identify lesions in areas of the brain which would not be included in conventional studies. Other advantages include the ability to examine the brain in multiple planes (transverse, dorsal, sagittal) and obtain and save the MRM images in a digital format that allows for postexperimental data processing and manipulation. MRM images were correlated with neuroanatomical and neuropathological findings. All suspected MRM images were compared to corresponding H&E slides. An important aspect of this study was that MRM was critical in defining our strategy for sectioning the brain, and for designing mechanistic studies (cytochrome oxidase evaluations) and functional assessments (electrophysiology studies) on specifically targeted anatomical sites following COS exposure.

Publisher

SAGE Publications

Subject

Cell Biology,Toxicology,Molecular Biology,Pathology and Forensic Medicine

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3