Murine Lethal Toxic Shock Caused by Intranasal Administration of Staphylococcal Enterotoxin B

Author:

Savransky Vladimir1,Rostapshov Victor1,Pinelis Dmitriy2,Polotsky Yury3,Korolev Sergey1,Komisar Jack1,Fegeding Konstantin4

Affiliation:

1. Department of Experimental Pathology, Division of Pathology, Department of Bacterial Diseases

2. Good Samaritan Hospital, 5601 Loch Raven Boulevard, Baltimore, Maryland 21239

3. Division of Communicable Diseases and Immunology, Walter Reed Army Institute of Research, Silver Spring, Maryland 20910

4. Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, Maryland 20814,

Abstract

Currently available murine staphylococcal enterotoxin B (SEB) shock models require pretreatment with various agents to increase mouse sensitivity to SEB. This study was performed to show that C3H/HeJ mice are highly susceptible to intranasal SEB inoculation, which caused toxic shock without using pretreatment agents. For this purpose, mice were injected intranasally with different doses of SEB and observed for up to 1 month. The median lethal dose of SEB was determined using the probit procedure. Tissue samples were taken at different time points for histopathological examination. The LD50 was found at 1.6 μg/g (95% fiducial limit (f.l.) 0.7 to 2.2), the LD80 at 2.7 μg/g (95% f.l. 1.9 to 4.0) and the LD90 at 3.6 μg/g (95% f.l. 2.7 to 6.4). Histopathologic examination revealed pulmonary edema and bronchopneumonia. Mucosal-associated lymphoid tissue first became activated, followed by increasing lymphocyte apoptosis and depletion. In the liver there were intralobular and portal inflammatory foci with increasing lymphocyte apoptosis and degenerative necrosis. The splenic white pulp was characterized by early activation and subsequent depletion of lymphoid follicle germinal centers. The thymus initially was activated, followed by increasing apoptosis and migration of lymphoid cells from the cortex to the medulla. The pathological features detected in the mice were similar to those of rhesus monkeys treated with SEB aerosol challenge.

Publisher

SAGE Publications

Subject

Cell Biology,Toxicology,Molecular Biology,Pathology and Forensic Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3