Predicting the traction power of metropolitan railway lines using different machine learning models
Author:
Affiliation:
1. Planning Department Office, Government of Antioquia, Medellín, Colombia
2. Department of Transport Engineering and Infrastructure, Universitat Politècnica De València (UPV), Valencia, Spain
Funder
Ministerio de Economía y Competitividad
Publisher
Informa UK Limited
Subject
Mechanics of Materials,Transportation,Automotive Engineering
Link
https://www.tandfonline.com/doi/pdf/10.1080/23248378.2020.1829513
Reference62 articles.
1. Evaluation of Strategies to Reducing Traction Energy Consumption of Metro Systems Using an Optimal Train Control Simulation Model
Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Optimization of the cruising speed for high-speed trains to reduce energy consumed by motion resistances;Applied Energy;2024-11
2. An instance-based transfer learning model with attention mechanism for freight train travel time prediction in the China–Europe railway express;Expert Systems with Applications;2024-10
3. Integrating multiple data sources for improved flight delay prediction using explainable machine learning;Research in Transportation Business & Management;2024-10
4. Research on Quantitative Model of Metro Traction Energy Consumption Considering Temporal and Spatial Characteristics of Passenger Flow;2023 IEEE/IAS Industrial and Commercial Power System Asia (I&CPS Asia);2023-07-07
5. Analysis of tourist satisfaction towards urban metro systems: an hybrid Natural Language Processing and classification model approach;2023 8th International Conference on Models and Technologies for Intelligent Transportation Systems (MT-ITS);2023-06-14
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3