An Evaluation of the Common Mechanism Approach to the Food Quality Protection Act: Captan and Four Related Fungicides, a Practical Example

Author:

Bernard Bruce K.1,Gordon Elliot B.2

Affiliation:

1. SRA International, Inc., Washington, DC, USA

2. Makhteshim-Agan of North America, Inc., New York, New York, USA

Abstract

Under the Food Quality Protection Act (FQPA) of 1996 (Act), the United States Environmental Protection Agency (EPA) is mandated to conduct cumulative risk assessment on pesticides that act through a common mechanism of toxicity. Incumbent on the Agency is the development of sound scientific principles upon which to evaluate compounds for the presence of a common mechanism. Using the currently available draft guidance criteria, this paper employs five fungicides of the same general class, typified by captan, to evaluate both the criteria and the available scientific data.Captan and folpet are two chloroalkylthio fungicides currently registered with EPA under Federal Insecticide, Fungicide, and Rodenticide Act (FIFRA) for agricultural use. As such, these compounds are subject to the provisions of FQPA. Three additional fungicidal compounds—dichlofluanid, tolylfluanid, and captafol—are not registered for use in the United States; however, these five compounds have chemical structure and biological toxicity similarities and differences that permit their utility as test cases to determine what the EPA would conclude, with regard to common mechanism, if these draft guidelines were applied to these compounds.The results of the analyses are consistent and support the conclusion that captan and folpet share a common mode of toxicity for mouse duodenal tumors as defined in the Act. This common mode of toxicity is not shared by dichlofluanid, tolylfluanid, or captafol.The basis for concluding a common mechanism exists between captan and folpet. They include 1. Structural Similarity—The compounds are structural analogs having the identical biologically active moiety (i.e., the-SCCl3side chain). 2. Mechanisms of Pesticidal Action—The compounds have the same mechanism of action. The overwhelming body of evidence suggests they are active because of their reactions with thiols. Both compounds, in reacting with thiols, produce similar degradates. Differences in rates of reaction are attributable to physical-chemical properties of the two compounds. 3. General Mechanisms of Mammalian Toxicity—The compounds induce mammalian toxicity through the same mechanism that is responsible for their pesticidal action, reactions with thiols. Another, albeit less likely, mechanism (for both compounds) is cross-Unking of proteins with DNA, although the extremely short half-lives of these compounds (seconds) argues against this possibility. 4. Sites of Action—Both compounds express their primary toxicity as local rather than systemic effects. 5. Common Toxic Endpoint—These two compounds induce gastrointestinal tumors (in mice only). 6. Mode of Action—Both compounds express their common toxic endpoint through a nongenotoxic, compensatory proliferation mechanism. 7. Specificity of Action—For both compounds, the majority of tumors appear in the duodenum. Furthermore, these tumors are induced only in mice. Repeated carcinogenicity testing suggests that rats are refractive to the effects of captan and folpet. The significantly faster hydrolytic rate for folpet at the lower pH values (e.g., increased 8-fold at pH 5) encountered in the stomach is believed to account for the tumors of the stomach observed with folpet and not captan. 8. Other Toxic Endpoints—For other toxic endpoints where comparative data are available, captan and folpet show similar patterns of toxicity (e.g., mutagenicity, skin sensitization, and acute toxicity).

Publisher

SAGE Publications

Subject

Toxicology

Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3