Amended Final Report on the Safety Assessment of Glyceryl Dilaurate, Glyceryl Diarachidate, Glyceryl Dibehenate, Glyceryl Dierucate, Glyceryl Dihydroxystearate, Glyceryl Diisopalmitate, Glyceryl Diisostearate, Glyceryl Dilinoleate, Glyceryl Dimyristate, Glyceryl Dioleate, Glyceryl Diricinoleate, Glyceryl Dipalmitate, Glyceryl Dipalmitoleate, Glyceryl Distearate, Glyceryl Palmitate Lactate, Glyceryl Stearate Citrate, Glyceryl Stearate Lactate, and Glyceryl Stearate Succinate1

Author:

Abstract

Glyceryl Dilaurate, Glyceryl Diarachidate, Glyceryl Dibehenate, Glyceryl Dierucate, Glyceryl Dihydroxystearate, Glyceryl Diisopalmitate, Glyceryl Diisostearate, Glyceryl Dilinoleate, Glyceryl Dimyristate, Glyceryl Dioleate, Glyceryl Diricinoleate, Glyceryl Dipalmitate, Glyceryl Dipalmitoleate, Glyceryl Distearate, Glyceryl Palmitate Lactate, Glyceryl Stearate Citrate, Glyceryl Stearate Lactate, and Glyceryl Stearate Succinate are diacylglycerols (also known as diglycerides or glyceryl diesters) that function as skin conditioning agents—emollients in cosmetics. Only Glyceryl Di-laurate (up to 5%), Glyceryl Diisostearate (up to 43%), Glyceryl Dioleate (up to 2%), Glyceryl Distearate (up to 7%), and Glyceryl Stearate Lactate (up to 5%) are reported to be in current use. Production proceeds from fully refined vegetable oils, which are further processed using hydrogenation and fractionation techniques, and the end products are produced by reacting selected mixtures of the partly hydrogenated, partly fractionated oils and fats with vegetable-derived glycerine to yield partial glycerides. In the final stage of the production process, the products are purified by deodorization, which effectively removes pesticide residues and lower boiling residues such as residues of halogenated solvents and aromatic solvents. Diglycerides have been approved by the Food and Drug Administration (FDA) for use as indirect food additives. Nominally, these ingredients are 1,3-diglycerides, but are easily isomerized to the 1,2-diglycerides form. The 1,3-diglyceride isomer is not a significant toxicant in acute, short-term, subchronic, or chronic animal tests. Glyceryl Dilaurate was a mild primary irritant in albino rabbits, but not a skin sensitizer in guinea pig maximization tests. Diacylglycerol Oil was not genotoxic in the Ames test, in mammalian Chinese hamster lung cells, or in a rodent bone marrow micronucleus assay. An eye shadow containing 1.5% Glyc-eryl Dilaurate did not induce skin irritation in a single insult patch test, but mild skin irritation reactions to a foundation containing the same concentration were observed. A trade mixture containing an unspecified concentration of Glyceryl Dibehenate did not induce irritation or significant cutaneous intolerance in a 48-h occlusive patch test. In maximization tests, neither an eye shadow nor a foundation containing 1.5% Glyceryl Dilaurate was a skin sensitizer. Sensitization was not induced in subjects patch tested with 50% w/w Glyceryl Dioleate in a repeated insult, occlusive patch test. Glyceryl Palmitate Lactate (50% w/v) did not induce skin irritation or sensitization in subjects patch tested in a repeat-insult patch test. Phototoxicity or photoallergenicity was not induced in healthy volunteers tested with a lipstick containing 1.0% Glyceryl Rosinate. Two diacylglycerols, 1-oleoyl-2-acetoyl-sn-glycerol and 1,2-dipalmitoyl-sn-glycerol, did not alter cell proliferation (as determined byDNAsynthesis) in normal human dermal fibroblasts in vitro at doses up to 10 ìg/ml. In the absence of initiation, Glyceryl Distearate induced a moderate hyperplastic response in randomly bred mice of a tumor-resistant strain, and with 9,10-dimethyl-1,2- benzanthracene (DMBA) initiation, an increase in the total cell count was observed. In a glyceryl monoester study, a single application of DMBA to the skin followed by 5% Glyceryl Stearate twice weekly produced no tumors, but slight epidermal hyperplasia at the site of application. Glyceryl Dioleate induced transformation in 3-methylcholanthrene-initiated BALB/3T3 A31-1-1 cloned cells in vitro. A tumor-promoting dosing regimen that consisted of multiple applications of 10 ìmol of a 1,2-diacylglycerol (sn-1,2- didecanoylglycerol) to female mice twice daily for 1 week caused more than a 60% decrease in protein kinase C (PKC) activity and marked epidermal hyperplasia. Applications of 10 ìmol sn-1,2- didecanoylglycerol twice weekly for 1 week caused a decrease in cytosolic PKC activity, an increase in particulate PKC activity, and no epidermal hyperplasia. In studies of the tumor-promoting activity of 1,2-diacylglycerols, dose and the exposure regimen by which the dose is delivered play a role in tumor promotion. The 1,2-diacylglycerol-induced activation ofPKCmay also relate to the saturation of the fatty acid in the 1 or 2 position; 1,2-Diacylglycerols with two saturated fatty acids are less effective. Also, the activity of 1,2-diacylglycerols may be reduced when the fatty acid moiety in the structure is a long-chain fatty acid. A histological evaluation was performed on human skin from female volunteers (18 to 56 years old) who had applied a prototype lotion or placebo formulation, both containing 0.5% Glyceryl Dilaurate, consecutively for 16 weeks or 21 weeks. Skin irritation was not observed in any of the subjects tested. Biopsies (2mm)taken fromboth legs of five subjects indicated no recognizable abnormalities of the skin; the epidermis was normal in thickness, and there was no evidence of scaling, inflammation, or neoplasms in any of the tissues that were evaluated. The Cosmetic Ingredient Review (CIR) Expert Panel considered that the available safety test data indicate that diglycerides in the 1,3-diester form do not present any significant acute toxicity risk, nor are these ingredients irritating, sensitizing, or photosensitizing. Whereas no data are available regarding reproductive or developmental toxicity, there is no reason to suspect any such toxicity because the dermal absorption of these chemicals is negligible. The Panel noted that these nominally 1,3-diglycerides contain 1,2- diglycerides, raising the concern that 1,2-diglycerides could potentially induce hyperplasia. Data regarding the induction ofPKCand the tumor promotion potential of 1,2-diacylglycerols increased the level of concern. Most of the diglycerides considered in this safety assessment, however, have fatty acid chains longer than 14 carbons and none have mixed saturated/unsaturated fatty acid moieties. The Panel considered it particularly important that a 21-week use study of a prototype lotion containing 0.5% Glyceryl Dilaurate (a 14-carbon chain fatty acid) indicated no evidence of scaling, inflammation, or neoplasms in biopsy specimens. Also, DNA synthesis assays on Glyceryl Dilaurate and Glyceryl Distearate indicated that neither chemical altered cell proliferation (as determined by DNA synthesis) in normal human dermal fibroblasts in vitro at doses up to 10 ìg/ml. The Panel understands that use testing is a common practice in industry and, if histopathology data are collected, the Panel believes that such an approach can demonstrate an absence of epidermal hyperplasia. Because the concentration of these ingredients can vary (up to 43% for Glyceryl Diisostearate in lipstick), the frequency of application can be several times daily, and the proportion of diglycerides that are inactive 1,3 isomers versus potentially biologically active 1,2 isomers is unknown, the Panel believes that each use should be examined to ensure the absence of epidermal hyperplasia during product development and testing. In the absence of inhalation toxicity data on the Glyceryl Diesters in this safety assessment, the Panel determined that these ingredients can be used safely in aerosolized products because they are not respirable. The Panel recognizes that certain ingredients in this group are reportedly used in a given product category, but the concentration of use is not available. For other ingredients in this group, information regarding use concentration for specific product categories is provided, but the number of such products is not known. In still other cases, an ingredient is not in current use, but may be used in the future. Although there are gaps in knowledge about product use, the overall information available on the types of products in which these ingredients are used and at what concentration indicate a pattern of use. Within this overall pattern of use, the CIR Expert Panel considers all ingredients in this group to be safe.

Publisher

SAGE Publications

Subject

Toxicology

Reference101 articles.

1. Aarhus Oliefabrik. 1997. Technical memorandum. Cremeol FR. Fractionated vegetable glycerides. Unpublished data submitted by CTFA, February 2,1999. 21 pages.

2. Aarhus Oliefabrik. 1998. Monitoring Report. Oil products from Aarhus Oliefab-rik A/S. Unpublished data submitted by CTFA, February 2, 1999. 23 pages.

3. Aarhus Oliefabrik. 2001. Letter on Glyceryl Diesters from Jorgen Eriksen to Dr. Carol Eisenmann. Unpublished data submitted by CTFA, June 26, 2001. 1 page.

4. Topically Applied Diacylglycerols Increase Pigmentation in Guinea Pig Skin

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3