A high-dimensional neural network potential for molecular dynamics simulations of condensed phase nickel and phase transitions
Author:
Affiliation:
1. Tim Taylor Department of Chemical Engineering, Kansas State University, Manhattan, KS, USA
2. Department of Anatomy and Physiology, Kansas State University, Manhattan, KS, USA
Funder
US Department of Energy Office of Science
Beocat Research Cluster at Kansas State University
NSF
National Energy Research Scientific Computing Center
Publisher
Informa UK Limited
Subject
Condensed Matter Physics,General Materials Science,General Chemical Engineering,Modeling and Simulation,Information Systems,General Chemistry
Link
https://www.tandfonline.com/doi/pdf/10.1080/08927022.2022.2156561
Reference63 articles.
1. Machine Learning Force Fields
2. Constructing high-dimensional neural network potentials: A tutorial review
3. First Principles Neural Network Potentials for Reactive Simulations of Large Molecular and Condensed Systems
4. On representing chemical environments
5. Accuracy and transferability of Gaussian approximation potential models for tungsten
Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Construction and application of deep learning potential for CaO under high pressure;Computational Materials Science;2024-09
2. Exploring the Coexistence Conditions and Intrinsic Relationships between Electrides, Superconductivity, Kagome Lattice, and Superionic Behaviors in Li–Ge Compounds;ACS Materials Letters;2024-07-17
3. An overview about neural networks potentials in molecular dynamics simulation;International Journal of Quantum Chemistry;2024-05-21
4. Predictions of Boron Phase Stability Using an Efficient Bayesian Machine Learning Interatomic Potential;The Journal of Physical Chemistry Letters;2024-02-23
5. Molecular Simulation Meets Machine Learning;Journal of Chemical & Engineering Data;2023-12-19
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3