Feasibility of an evolutionary artificial intelligence (AI) scheme for modelling of load settlement response of concrete piles embedded in cohesionless soil
Author:
Affiliation:
1. Department of Civil Engineering, Liverpool John Moores University, Liverpool, UK
Funder
Iraqi Cultural Attache in London
University of Wasit
Publisher
Informa UK Limited
Subject
Mechanical Engineering,Ocean Engineering
Link
https://www.tandfonline.com/doi/pdf/10.1080/17445302.2018.1447746
Reference61 articles.
1. Flood risk assessment for urban water system in a changing climate using artificial neural network
2. Evolving simple-to-use method to determine water–oil relative permeability in petroleum reservoirs
3. Artificial neural network modeling and cluster analysis for organic facies and burial history estimation using well log data: A case study of the South Pars Gas Field, Persian Gulf, Iran
4. Predicting pile dynamic capacity via application of an evolutionary algorithm
5. Regressive approach for predicting bearing capacity of bored piles from cone penetration test data
Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Systematic literature review and mapping of the prediction of pile capacities;Soils and Rocks;2023-04-05
2. Usage of coot optimization-based random forests analysis for determining the shallow foundation settlement;GEOMECH ENG;2023
3. Model Test and Numerical Simulation Study on the Effect of Mudcake and Length-Diameter Ratio on the Bearing Capacity of Bored Cast-in-Place Piles;Advances in Civil Engineering;2022-10-03
4. Prediction of the Stability of Various Tunnel Shapes Based on Hoek–Brown Failure Criterion Using Artificial Neural Network (ANN);Sustainability;2022-04-11
5. Interaction behavior and load sharing pattern of piled raft using nonlinear regression and LM algorithm-based artificial neural network;Frontiers of Structural and Civil Engineering;2021-09-20
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3