Classification of polarimetric SAR images using compact convolutional neural networks
Author:
Affiliation:
1. Computing Sciences, Tampere University, Tampere, Finland
2. Electrical Engineering Department, Qatar University, Doha, Qatar
3. Electrical and Electronics Engineering Department, Izmir University of Economics, Izmir, Turkey
Publisher
Informa UK Limited
Subject
General Earth and Planetary Sciences
Link
https://www.tandfonline.com/doi/pdf/10.1080/15481603.2020.1853948
Reference48 articles.
1. Performance Comparison of Learned vs. Engineered Features for Polarimetric SAR Terrain Classification
2. Dual and Single Polarized SAR Image Classification Using Compact Convolutional Neural Networks
3. Unsupervised classification of agricultural land cover using polarimetric synthetic aperture radar via a sparse texture dictionary model
4. Feature motivated polarization scattering matrix decomposition
5. Feature evaluation and selection for polarimetric SAR image classification
Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Deep learning-based gap filling for near real-time seamless daily global sea surface salinity using satellite observations;International Journal of Applied Earth Observation and Geoinformation;2024-08
2. SSC-SFN: spectral-spatial non-local segment federated network for hyperspectral image classification with limited labeled samples;International Journal of Digital Earth;2024-01-09
3. Classification evaluation and improvement of airborne PolSAR images for land use mapping using deep learning;Geocarto International;2024-01
4. Performance evaluation of backscattering coefficients and polarimetric decomposition parameters for marsh vegetation mapping using multi-sensor and multi-frequency SAR images;Ecological Indicators;2023-12
5. Land cover analysis of PolSAR images using probabilistic voting ensemble and integrated support vector machine;Journal of Applied Remote Sensing;2023-10-20
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3