The Impact of Proinflammatory Cytokines and Imiquimod on GLUT1 in HaCaT Keratinocytes – a Potential Anti-Psoriatic Therapeutic Target?

Author:

Abstract

Background/Aims: Glucose metabolism has been proven as an essential process for proliferating keratinocytes, which highlights the importance of glucose transporter-1 (GLUT1) not only in the onset of psoriasis but also in the progression and severity of this inflammation-driven disease. In this study, we attempted to find a connection between proinflammatory cytokines (IL-6, IL-17, IL-23, IL-36, TNF-α), a skin inflammation inducing agent – imiquimod (IMQ) and GLUT1 expression. Methods: Human keratinocyte HaCaT cell line was incubated with exogenous cytokines: IL-6, IL-17A, IL-23, IL-36, TNF-α at a final concentration of 100 ng/ml, or with 1 µM of IMQ, for 48 h. Following the stimulation, glucose uptake and GLUT1 expression were evaluated. The activity of GLUT1 was measured in the presence of a selective GLUT1 inhibitor, BAY-876. The expression of GLUT1 was examined by immunofluorescence and quantified by qPCR, Western blotting and densitometry. Results: The results from qPCR analysis showed that the administration of exogenous IL-6, IL-17, IL-23 and IL-36 to HaCaT cells resulted in upregulation of GLUT1-encoding SLC2A1 gene, while TNF-α had no significant effect. The same results were confirmed by immunofluorescence analysis, as the fluorescent intensity of GLUT1 was elevated following cytokine and IMQ stimulation. Western blot and densitometry showed that all examined cytokines, as well as IMQ, increased GLUT1 expression. HaCaT cells displayed an improved intracellular 2-deoxy-D-glucose (2-DG) uptake and GLUT1 activity after stimulation by exogenous cytokines and IMQ. The highest uptake of 2-DG was observed after IL-23 stimulation (1.93x) and the lowest after TNF-α stimulation (1.07x). BAY-876 inhibited the 2-DG uptake compared to control. Conclusion: Our findings suggest that cytokines and IMQ may play a key role in regulating GLUT1 expression in HaCaT cells. We believe that GLUT1 overexpression could potentially be utilized in the targeted treatment of psoriasis.

Publisher

Cell Physiol Biochem Press GmbH and Co KG

Subject

Physiology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3