Abstract
Prefabricated modular steel (PFMS) construction is a more efficient and safe method of constructing a high-quality building with less waste material and labour dependency than traditional steel construction. It is indeed critical to have a precise and valuable intermodular joining system that allows for efficient load transfer, safe handling, and optimal use of modular units' strength. Thus, the purpose of this study was to develop joints using tension bolts and solid tenons welded into the gusset plate (GP). These joints ensured rigid and secure connectivity in both horizontal and vertical directions for the modular units. Using the three-dimensional (3D) finite element (FE) analysis software ABAQUS, the study investigated the nonlinear lateral structural performance of the joint and two-storey modular steel building (MSB). The solid element FE models of joints were then simplified by introducing connectors and beam elements to enhance computational efficiency. Numerous parameters indicated that column tenons were important in determining the joint's structural performance. Moreover, with a standard deviation (SD) of 0.025, the developed connectors and beam element models accurately predicted the structural behaviour of the joints. As a result of their simplification, these joints demonstrated effective load distribution, seismic performance, and ductility while reducing computational time, effort, and complexity. The validity of the FE analysis was then determined by comparing the results to the thirteen joint bending tests performed in the reference.
Publisher
The Hong Kong Institute of Steel Construction
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献