Numerical and Theoretical Studies on Axial Compression Performance of Modular Steel Tubular Columns Grouped with Shear-Key Connectors

Author:

Khan Kashan12ORCID,Chen Zhihua234,Youssef Maged A.5ORCID,Abbas Danish6

Affiliation:

1. School of Civil Engineering and Architecture, Taizhou University, Taizhou 317000, China

2. School of Civil Engineering, Tianjin University, Tianjin 300072, China

3. State Key Laboratory of Hydraulic Engineering Simulation and Safety, Tianjin 300051, China

4. Key Laboratory of Coast Civil Structure and Safety, Tianjin University, Tianjin 300072, China

5. Department of Civil and Environmental Engineering, Western University, London, ON N6A 3K7, Canada

6. College of Intelligence and Computing, Tianjin University, Tianjin 300072, China

Abstract

Shear-keyed inter-modular connections (IMCs) are integral components of high-rise modular steel structures (MSSs), providing robust interconnectivity to support grouped tubular columns across modules, thereby introducing column discontinuities and distinctive structural behavior. This study conducted a comprehensive numerical assessment and theoretical analysis of the axial compression behavior of grouped tubular columns based on a validated finite element model (FEM), which captured the member-to-structural level behavior of steel hollow section (SHS) columns and accommodated geometric imperfections. An FEM was initially developed and validated using 28 axial compression tests documented in the literature, comprising 15 tests on cold-formed and 13 on hot-rolled steel hollow section (SHS) columns. The primary parameters explored in tests included material properties (stainless/carbon), processing methods (cold-formed/hot-rolled), cross-section sizes (D/B), cross-sectional or member slenderness ratios (D/tc, B/tc, or Lc/r), and the number of columns (1, 7, and 11). A comprehensive parametric numerical study involving 103 grouped tubular column FEMs then investigated the influence of initial imperfection, shear-key height (Lt), thickness (tt), steel tube length (D), width (B), thickness (tc), and height (Lc) alongside the effects of space between tube and key, and the gap between tubes. The results indicated that the load-shortening behavior of the grouped columns consists of linear elastic, inelastic, and recession stages. The failure modes observed primarily displayed an S-shaped pair of inward and outward local buckling on the outer sides and double S-shaped local buckling on the interior sides. The buckling arose near the shear key or at 1/4 or 1/2 of the column height. None of the considered models experienced global buckling. Increasing tt, Lt, tc, D, or B enhances strength and stiffness, while Lc or Lc/r linearly affects stiffness and ductility. The columns’ nominal axial strength was reduced because of the shear keys, which decreased compression yielding and caused localized elastic buckling. Subsequently, the theoretical analysis revealed that the design codes do not capture this behavior, and thus, their capacity estimate yields inaccurate findings. This discrepancy renders existing code prediction equations, including those from Indian (IS800), New Zealand (NZS400), European (EC3:1-1), Canadian (CSA S16), American (AISC360-16), and Chinese (GB50017) standards, as well as the model proposed by Li et al., non-conservative. To assure conservative results, the paper recommended modification of existing standards and proposed prediction equations based on a fourth-order differential equation that describes the actual behavior of modular steel columns grouped with shear keys. The proposed design approach accurately predicted the axial compression capacity of modular steel-grouped columns, proving conservative yet effective. This provides valuable data that could transform design and construction techniques for MSSs, extending to various column and IMC forms through adaptable design parameters. This enhancement in structural performance and safety significantly contributes to the advancement of modular construction practices.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3