Formation of staling aldehydes in different grain bed layers in an industrial scale maltings

Author:

Filipowska Weronika,Bolat Irina,De Rouck Gert,Bauwens Jeroen,Cook David,De Cooman Luc

Abstract

Understanding the contribution of raw materials to the quality of the final product is crucial for the food industry. In the brewing process, malt delivers various compounds that compromise the flavour stability of beer, including staling aldehydes and their precursors. The primary aim of this study was to investigate the evolution of staling aldehydes and their cysteinylated counterparts throughout industrial scale pale malt production. The second objective was to study the extent to which process related gradients (e.g., temperature, moisture) may contribute to the differential formation of free and bound state aldehydes. Samples were collected from two industrial scale, pale lager malt production processes as a function of process time (germination, kilning, and cooling) and the position of the kernals in the grain bed (bottom, middle and top layers) during kilning. The levels of free and cysteinylated aldehydes were determined. The results show that the initial stage of germination is accompanied by enzymatic fatty acid oxidation as reflected by the formation of hexanal and trans-2-nonenal. Drying at elevated temperature (at a critical moisture content of 6-9%) results in the intensified formation of cysteinylated Strecker aldehydes and furfural. Moreover, a rapid increase in the formation of (cysteinylated) Strecker aldehydes furfural and trans-2-nonenal continued through kilning. A clear effect of temperature and moisture gradients was observed on the formation of aldehydes and it is concluded that exposure to heat load plays a critical role in the development of cysteinylated aldehydes during malt production. This publication is dedicated to the memory of Professor Luc De Cooman.

Publisher

The Institute of Brewing & Distilling

Subject

Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3