Effect of NH3 flow rate to titanium nitride as etch hard mask in thermal atomic layer deposition

Author:

Kang Ju Eun1ORCID,Hong Sang Jeen1ORCID

Affiliation:

1. Department of Semiconductor Engineering, Myongji University, Yongin, Gyeonggi-do, South Korea

Abstract

Managing the hardness, density, and residual stress of the titanium nitride (TiN) hard mask has become increasingly significant for achieving excellent selectivity in the high aspect ratio etching process. This research investigates the enhancement of hardness, density, residual stress, and etch selectivity of a TiN film during the atomic layer deposition process using varying NH3 flow rates. Additionally, the study establishes a correlation between the improvement of hard mask properties and NH3 flow rates, taking into account the film composition, crystallinity, surface roughness, interface layers, and film thickness. The effects of NH3 could be summarized into three types. High N–N and Ti–N bonds, along with increased film hardness, are achieved by elevating the NH3 flow rate. Furthermore, this adjustment promotes the growth of crystal planes with higher lattice constants and modifies the interface layer thickness between Si and TiN, directly impacting residual stress. The TiN film exhibits increased roughness and decreased uniformity. In addition, at NH3 50 SCCM, hardness, density, and residual stress improved by 81.8%, 110%, and 87.5%, respectively. The selectivity saw a significant increase of 77.7%. This study provides an analysis of the relationship between the NH3 flow rate and TiN thin film properties, which is essential for improving TiN hard mask properties in flow type reactors.

Funder

Korea Evaluation Institute of Industrial Technology

Publisher

American Vacuum Society

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3