Assessing dead time effects when attempting isotope ratio quantification by time-of-flight secondary ion mass spectrometry

Author:

Baqué Laura C.1ORCID,Cabello Federico M.2ORCID,Viva Federico A.2ORCID,Corti Horacio R.23ORCID

Affiliation:

1. Nanoscience and Nanotechnology Institute (CNEA-CONICET), Department of Materials Characterization, Bariloche Atomic Center 1 , Av. Bustillo 9500, S. C. de Bariloche, Río Negro R8402AGP, Argentina

2. Nanoscience and Nanotechnology Institute (CNEA-CONICET), Department of Condensed Matter Physics, Constituyentes Atomic Center 2 , Av. General Paz 1499, San Martín, Buenos Aires B1650KNA, Argentina

3. Argentine Neutron Beam Laboratory (LAHN), CNEA 3 , Av. General Paz 1499, San Martín, Buenos Aires B1650KNA, Argentina

Abstract

Time-of-flight secondary ion mass spectrometry (TOF-SIMS) is a quasi-non-destructive technique capable of analyzing the outer monolayers of a solid sample and detecting all elements of the periodic table and their isotopes. Its ability to analyze the outer monolayers resides in sputtering the sample surface with a low-dose primary ion gun, which, in turn, imposes the use of a detector capable of counting a single ion at a time. Consequently, the detector saturates when more than one ion arrives at the same time hindering the use of TOF-SIMS for quantification purposes such as isotope ratio estimation. Even though a simple Poisson-based correction is usually implemented in TOF-SIMS acquisition software to compensate the detector saturation effects, this correction is only valid up to a certain extent and can be unnoticed by the inexperienced user. This tutorial describes a methodology based on different practices reported in the literature for dealing with the detector saturation effects and assessing the validity limits of Poisson-based correction when attempting to use TOF-SIMS data for quantification purposes. As a practical example, a dried lithium hydroxide solution was analyzed by TOF-SIMS with the aim of estimating the 6Li/7Li isotope ratio. The approach presented here can be used by new TOF-SIMS users on their own data for understanding the effects of detector saturation, determine the validity limits of Poisson-based correction, and take into account important considerations when treating the data for quantification purposes.

Funder

Agencia Nacional de Promoción Científica y Tecnológica

Publisher

American Vacuum Society

Subject

General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Materials Science,Biomaterials,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3