Affiliation:
1. McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712
Abstract
Nickel and nickel oxide are utilized within various device heterostructures for chemical sensing, solar cells, batteries, etc. Recently, the rising interest in realizing low-cost, flexible electronics to enable ubiquitous sensors and solar panels, next-generation displays, and improved human-machine interfaces has driven interest in the development of low-temperature fabrication processes for the integration of inorganic devices with polymeric substrates. Here, we report the low-temperature area-selective atomic layer deposition of Ni by reduction of preformed NiO. Area-selective deposition of NiO is performed at 100 °C using bis( N, N'-di- tert-butylacetamidinato) nickel(II) and water on SiO2 and polystyrene. NiO grows two-dimensionally and without nucleation delay on oxide substrates but not on SiNx or polystyrene, which require surface treatments to promote NiO nucleation. Additionally, prepatterned sp2 carbon-rich resists inhibit the nucleation of NiO, and in this way, carbon-free NiO may be patterned. Subsequent thermal reduction of NiO to Ni was investigated using H2 (50–80 m Torr) and thermally generated H-atoms (3 × 10−5 Torr chamber pressure). Due to the relatively high free surface energy of Ni metal, Ni films undergo dewetting at elevated temperatures when solid-state transport is enabled. Reduction of NiO to Ni is demonstrated at 100 °C and below using atomic hydrogen. In situ x-ray photoelectron spectroscopy is used to determine oxidation state and ex situ x-ray reflectivity and atomic force microscopy are used to probe the film thickness and surface morphology, respectively.
Funder
National Science Foundation
Welch Foundation
Subject
Surfaces, Coatings and Films,Surfaces and Interfaces,Condensed Matter Physics
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献