Area selective atomic layer deposition of SnO2 as an etch resist in fluorine based processes

Author:

Yang Xin1ORCID,Nallan Himamshu2ORCID,Coffey Brennan M.2ORCID,Ekerdt John G.1ORCID

Affiliation:

1. McKetta Department of Chemical Engineering, University of Texas at Austin 1 , Austin, Texas 78712

2. Lam Research Corp. 2 , Fremont, California 94538

Abstract

Here, we propose SnO2 as a reactive ion etching (RIE) mask in fluorine-based etching processes. Tin forms nonvolatile compounds with fluorine at the process temperatures enabling tin to function as an etch mask. We investigate atomic layer deposition (ALD) of SnO2 on silicon thermal oxide, silicon native oxide, H-terminated Si(001), and polystyrene surfaces using tetrakis(dimethylamino) tin(IV) and H2O at 170 °C to understand film nucleation patterns. Pinhole free films of approximately 1 nm thick SnO2 form on silicon thermal oxide and silicon native oxide and resist etching with SF6 under conditions that etch 0.3 μm into silicon. Nucleation delays were observed on H-terminated Si(001) producing continuous films with pinhole defects. Etch proof-of-concept is studied by UV crosslinking polystyrene, dissolving away non-crosslinked polystyrene to expose native oxide, and depositing 20–100 ALD cycles of SnO2. Well-defined grid patterns are transferred 1.2 μm into Si(001) with SF6 RIE when 50 ALD cycles of SnO2 are grown, which is approximately 4 nm thick.

Funder

National Science Foundation

Welch Foundation

Publisher

American Vacuum Society

Subject

Surfaces, Coatings and Films,Surfaces and Interfaces,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3