Microstructure, creep properties, and electrical resistivity of magnetron sputtering deposited SAC305 thin films

Author:

Ojha Manish12ORCID,Mohammed Yousuf12ORCID,Stone D. S.3ORCID,Elmustafa A. A.12ORCID

Affiliation:

1. Department of Mechanical and Aerospace Engineering, Old Dominion University 1 , Norfolk, Virginia 23529

2. The Applied Research Center-Thomas Jefferson National Accelerator Facility 2 , Newport News, Virginia 23606

3. Department of Materials Science and Engineering, University of Wisconsin-Madison 3 , Madison, Wisconsin 53706

Abstract

This paper investigates the surface morphology, mechanical properties, and electrical resistivity of 96.5Sn–3.0Ag–0.5Cu (SAC305) thin films deposited on Si and SiO2 substrates through RF magnetron sputtering. Various deposition parameters were tested using both DC and RF power sources at different pressures and powers to produce robust continuous films. The most optimal surface morphology, with an average grain size of ∼1 μm and a thickness of ∼2.2 μm, was accomplished at a pressure of 2.4 mTorr and 200 W power. After polishing, a uniform thickness of 1800 nm with a mean roughness (Ra) of 14.9 nm was obtained. The samples contained polycrystalline β-Sn grains at (200) diffraction planes with a preferred orientation 2θ of 30.70°. Although the XRD pattern did not indicate any Ag peaks, weak peaks of Ag3Sn were observed at 2θ of 37.60° and 39.59°, corresponding to diffraction planes (020) and (211), respectively. The electrical resistivity of the SAC305 thin film deposited on the SiO2 substrate and of the bulk SAC305 samples were measured as 19.6 and 13.7 μΩ cm, respectively. It was noted that changes in hold time at peak loads or the rate of loading in the creep experiments did not significantly influence the creep properties of the SAC305 bulk or thin film material.

Publisher

American Vacuum Society

Subject

Materials Chemistry,Electrical and Electronic Engineering,Surfaces, Coatings and Films,Process Chemistry and Technology,Instrumentation,Electronic, Optical and Magnetic Materials

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Fabrication of smooth SAC305 thin film via magnetron sputtering;Journal of Materials Science: Materials in Electronics;2024-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3