Affiliation:
1. Fondazione Istituto Italiano di Tecnologia Center for Life Nano-Neuroscience at la Sapienza Viale Regina Elena 291, 00161 Roma, Italy
Abstract
We present a quantum computing algorithm for fluid flows based on the Carleman-linearization of the Lattice Boltzmann (LB) method. First, we demonstrate the convergence of the classical Carleman procedure at moderate Reynolds numbers, namely, for Kolmogorov-like flows. Then we proceed to formulate the corresponding quantum algorithm, including the quantum circuit layout, and analyze its computational viability. We show that, at least for moderate Reynolds numbers between 10 and 100, the Carleman–LB procedure can be successfully truncated at second order, which is a very encouraging result. We also show that the quantum circuit implementing the single time-step collision operator has a fixed depth, regardless of the number of lattice sites. However, such depth is of the order of ten thousands quantum gates, meaning that quantum advantage over classical computing is not attainable today, but could be achieved in the near or mid-term future. The same goal for the multi-step version remains, however, an open topic for future research.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Quantum computing for simulation of fluid dynamics;Quantum Information Science - Recent Advances and Computational Science Applications;2024-05-08
2. Three Carleman routes to the quantum simulation of classical fluids;Physics of Fluids;2024-05-01