Quantum neural network autoencoder and classifier applied to an industrial case study
-
Published:2022-06-17
Issue:2
Volume:4
Page:
-
ISSN:2524-4906
-
Container-title:Quantum Machine Intelligence
-
language:en
-
Short-container-title:Quantum Mach. Intell.
Author:
Mangini StefanoORCID, Marruzzo Alessia, Piantanida Marco, Gerace Dario, Bajoni Daniele, Macchiavello Chiara
Abstract
AbstractQuantum computing technologies are in the process of moving from academic research to real industrial applications, with the first hints of quantum advantage demonstrated in recent months. In these early practical uses of quantum computers, it is relevant to develop algorithms that are useful for actual industrial processes. In this work, we propose a quantum pipeline, comprising a quantum autoencoder followed by a quantum classifier, which are used to first compress and then label classical data coming from a separator, i.e., a machine used in one of Eni’s Oil Treatment Plants. This work represents one of the first attempts to integrate quantum computing procedures in a real-case scenario of an industrial pipeline, in particular using actual data coming from physical machines, rather than pedagogical data from benchmark datasets.
Funder
Eni Ministero dell’Istruzione, dell’Universitá e della Ricerca Università degli Studi di Pavia
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Artificial Intelligence,Computational Theory and Mathematics,Theoretical Computer Science,Software
Reference59 articles.
1. Abadi M, Agarwal A, Barham P, Brevdo E, Chen Z, Citro C, Corrado GS, Davis A, Dean J, Devin M, Ghemawat S, Goodfellow I, Harp A, Irving G, Isard M, Jia Y, Jozefowicz R, Kaiser L, Kudlur M, Levenberg J, Mané D, Monga R, Moore S, Murray D, Olah C, Schuster M, Shlens J, Steiner B, Sutskever I, Talwar K, Tucker P, Vanhoucke V, Vasudevan V, Viégas F, Vinyals O, Warden P, Wattenberg M, Wicke M, Yu Y, Zheng X (2015) TensorFlow: Large-scale machine learning on heterogeneous systems. https://www.tensorflow.org/, software available from tensorflow.org 2. Abbas A, Sutter D, Zoufal C, Lucchi A, Figalli A, Woerner S (2021) The power of quantum neural networks. Nature Computational Science 1:403 3. Abraham H, et al (2019) Qiskit: An open-source framework for quantum computing 4. Barkoutsos PK, Gonthier JF, Sokolov I, Moll N, Salis G, Fuhrer A, Ganzhorn M, Egger DJ, Troyer M, Mezzacapo A, Filipp S, Tavernelli I (2018) Quantum algorithms for electronic structure calculations: Particle-hole hamiltonian and optimized wave-function expansions. Phys Rev A 98:022322 5. Benedetti M, Lloyd E, Sack S, Fiorentini M (2019) Parameterized quantum circuits as machine learning models. Quantum Sci Technol 4:043001
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|