Targeted synthesis of predicted metastable compounds using modulated elemental reactants

Author:

Lemon Mellie1ORCID,Harvel Fischer G.1ORCID,Gannon Renae N.1ORCID,Lu Ping2,Rudin Sven P.3ORCID,Johnson David C.1ORCID

Affiliation:

1. Department of Chemistry and Materials Science Institute, University of Oregon, Eugene, Oregon 97403

2. Sandia National Laboratories, Albuquerque, New Mexico 87185

3. Los Alamos National Laboratory, Los Alamos, Los Alamos, New Mexico 87545

Abstract

Three metastable compounds predicted to be kinetically stable using an “island” approach were successfully synthesized from designed modulated elemental reactants. Fe0.8V0.2Se2 was synthesized by depositing ultrathin elemental layers in a V|Fe|Se sequence to control the local composition. An alloyed rock salt structured Pb3Mn2Se5 constituent layer, which does not exist as a bulk compound, was synthesized in the heterostructure (Pb3Mn2Se5)0.6VSe2 by depositing a precursor with a V|Se|Pb|Se|Mn|Se|Pb|Se|Mn|Se|Pb|Se sequence of elemental layers that mimicked the compositional profile of the targeted heterostructure. The heterostructure (PbSe)1+δ(FeSe2)2 was prepared by depositing a precursor with a repeating layering sequence of Fe|Pb|Fe|Se, where each sequence contains the number of atoms required to form a single unit cell. In all three systems, the local compositions in the layer sequence kinetically favored the nucleation and growth of the targeted products during the deposition. The diffusion lengths to form the targeted compounds were short, and the diffusion was limited by postdeposition low temperature annealing to favor the growth of the targeted compounds and avoid the decomposition into a mixture of thermodynamically stable compounds.

Funder

Basic Energy Sciences

Los Alamos National Laboratory

Sandia National Laboratories

Publisher

American Vacuum Society

Subject

Surfaces, Coatings and Films,Surfaces and Interfaces,Condensed Matter Physics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3