Effects of adventitious impurity adsorption on oxygen interstitial injection rates from submerged TiO2(110) and ZnO(0001) surfaces

Author:

Jeong Heonjae1ORCID,Seebauer Edmund G.2ORCID

Affiliation:

1. Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign 1 , Urbana, Illinois 61801

2. Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign 2 , Urbana, Illinois 61801

Abstract

Low bond coordination of surface atoms facilitates the injection of oxygen interstitial atoms into the bulk near room temperature from the clean surfaces of semiconducting metal oxides when exposed to liquid water, opening new prospects for postsynthesis defect engineering and isotopic fractionation. The injection rate and penetration depth vary considerably under identical experimental conditions, however, with the adsorption of adventitious carbon suggested as the cause. For water-submerged rutile TiO2(110) and wurtzite ZnO(0001), this work bolsters and refines that hypothesis by combining the isotopic self-diffusion measurements of oxygen with characterization by x-ray photoelectron spectroscopy and atomic force microscopy. Adventitious carbon likely diminishes injection rates by poisoning small concentrations of exceptionally active surface sites that either inject O or dissociate adsorbed OH to injectable O. These effects propagate into the penetration depth via the progressive saturation of Oi traps near the surface, which occurs less extensively as the injected flux decreases.

Funder

Division of Materials Research

Publisher

American Vacuum Society

Subject

Surfaces, Coatings and Films,Surfaces and Interfaces,Condensed Matter Physics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3