Effect of tilted closed-field magnetron design on the microstructure and mechanical properties of TiZrNbTaN coatings

Author:

Honnali Sanath Kumar1ORCID,Poterie Charlotte2ORCID,le Febvrier Arnaud1ORCID,Lundin Daniel3ORCID,Greczynski Grzegorz1ORCID,Eklund Per1ORCID

Affiliation:

1. Thin Film Physics Division, Department of Physics, Chemistry, and Biology (IFM), Linköping University 1 , Linköping 581 83, Sweden

2. Faculty of Fundamental and Applied Sciences, University of Poitiers 2 , Poitiers 86000, France

3. Plasma and Coating Physics Division, Department of Physics, Chemistry, and Biology (IFM), Linköping University 3 , Linköping 581 83, Sweden

Abstract

A common design of sputtering systems is to integrate many magnetron sources in a tilted closed-field configuration, which can drastically affect the magnetic field in the chamber and thus plasma characteristics. To study this effect explicitly, multicomponent TiZrNbTaN coatings were deposited at room temperature using direct current magnetron sputtering (DCMS) and high-power impulse magnetron sputtering (HiPIMS) with different substrate biases. The coatings were characterized by x-ray diffraction, scanning electron microscopy, nano-indentation, and energy dispersive x-ray spectroscopy. Magnetic field simulations revealed ten times higher magnetic field strengths at the substrate in single-magnetron configuration when compared to the closed-field. As a result, the substrate ion current increased ∼3 and 1.8 times for DCMS and HiPIMS, respectively. The film microstructure changed with the discharge type, in that DCMS coatings showed large sized columnar structures and HiPIMS coatings show globular nanosized structures with (111) orientation with a closed-field design. Coatings deposited from a single source showed dense columnar structures irrespective of the discharge type and developed (200) orientation only with HiPIMS. Coatings deposited with closed-field design by DCMS had low stress (0.8 to −1 GPa) and hardness in the range from 13 to 18 GPa. Use of HiPIMS resulted in higher stress (−3.6 to −4.3 GPa) and hardness (26–29 GPa). For coatings deposited with single source by DCMS, the stress (−0.15 to −3.7 GPa) and hardness were higher (18–26 GPa) than for coatings grown in the closed-field design. With HiPIMS and single source, the stress was in the range of −2.3 to −4.2 GPa with a ∼6% drop in the hardness (24–27 GPa).

Funder

VINNOVA

SFO-Mat-LiU

Knut och Alice Wallenbergs Stiftelse

Vetenskapsrådet

Energimyndigheten

Publisher

American Vacuum Society

Subject

Surfaces, Coatings and Films,Surfaces and Interfaces,Condensed Matter Physics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Wear and corrosion resistance of zinc-oxide and zirconium-oxide coated WE43 magnesium alloy;Journal of Vacuum Science & Technology A;2023-10-04

2. Structural, mechanical, and anticorrosive properties of (TiZrNbTa)N films;Journal of Materials Research and Technology;2023-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3