6p valence relativistic effects in 5d photoemission spectrum of Pb atom and bonding properties of Pb-dimer using Dirac–Hartree–Fock formalism including many-body effects

Author:

Bagus Paul S.1ORCID,Suzer Sefik2ORCID

Affiliation:

1. Center for Advanced Scientific Computing and Modeling (CASCaM), Department of Chemistry, University of North Texas, 1155 Union Circle #305070, Denton, Texas 76203-5017

2. Chemistry Department, Bilkent University, 06800 Ankara, Turkey

Abstract

There has been strong recent interest related to the large spin–orbit coupling in Pb monolayers on various properties of graphene and other 2D-materials. The underlying physical/chemical origin of the spin–orbit splitting has been discussed in terms of the valence 6p atomic level of the lead atom. Indeed, the photoelectron spectra of the Pb atom were the subject of investigations about 50 years ago in Dave Shirley’s laboratory at UC Berkeley. In a paper published in 1975, using He-I UV photoelectron spectroscopy, we reported an unexpected relative intensity ratio for the observed atomic Pb peaks (2P1/2 and 2P3/2) after removal of a 6p valence electron and attributed it to the large spin–orbit interaction in that level. In this contribution, we use the Dirac–Hartree–Fock formalism to reanalyze the complex spectral features reported five years later, for the 5d He-II UV photoelectron spectrum of atomic lead, to extract the 6p valence contribution, which turns out to be significant. Furthermore, we calculate the energy levels of the Pb-dimer at the experimental equilibrium geometry of the molecule to also find the significant contribution of the spin–orbit splitting of the atomic 6p levels in the composition of the valence molecular orbitals of the dimer. Such an approach can be extended to larger systems like monolayers containing lead or other heavy atoms, thus helping in designing 2D-materials with controlled and better targeted properties.

Funder

US Department of Energy, Office of Basic Energy Sciences, Geosciences Program at Pasific Nortwest National Laboratory

Publisher

American Vacuum Society

Subject

Surfaces, Coatings and Films,Surfaces and Interfaces,Condensed Matter Physics

Reference49 articles.

1. Relativistic effects on chemical properties

2. Relativity and the periodic system of elements

3. Relativistic Effects in Chemistry: More Common Than You Thought

4. Relativity and the periodic table

5. S. Suzer, “High temperature UV photoelectron spectroscopy,” Ph.D. thesis (University of California, Berkeley, 1976), LBL-Report 4922.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3