Unveiling interface structure and polarity of wurtzite ZnO film epitaxially grown on a-plane sapphire substrate

Author:

Lu Lu1ORCID,Meng Weiwei2ORCID,Wang Yingmin3ORCID,Qiang Jianbing3ORCID,Mi Shao-Bo14ORCID

Affiliation:

1. Ji Hua Laboratory 1 , Foshan 528200, China

2. South China Academy of Advanced Optoelectronics, South China Normal University 2 , Guangzhou 510006, China

3. School of Materials Science and Engineering, Dalian University of Technology 3 , Dalian 116024, China

4. Foshan University 4 School of Mechatronic Engineering and Automation, , Foshan 528225, China

Abstract

Atomic-scale structure properties of the epitaxial growth of the wurtzite ZnO film prepared on an a-plane sapphire (α-Al2O3) substrate have been investigated by using aberration-corrected transmission electron microscopy. The crystallographic orientation relationship of (0001)[1¯1¯20]ZnO//(112¯0)[0001]α-Al2O3 has been determined between the ZnO film and the α-Al2O3 substrate. Two types of oxygen-terminated a-plane α-Al2O3 substrate surfaces have been characterized, which leads to the formation of different heterointerface structures and ZnO domains with opposite lattice polarity. The coalescence of opposite polarity domains results in the appearance of inversion domain boundaries (IDBs) on prismatic planes, and kinks occur on basal planes during the propagation of IDBs within the film. Additionally, the structure of stacking mismatch boundaries in the film with threefold coordinated Zn and O atoms has been resolved. We believe that these findings can be helpful to advance the understanding of the complex propagation of planar defects (e.g., IDBs and stacking faults) in wurtzite films and the interface structure and polarity of wurtzite films on the a-plane sapphire substrate.

Funder

Basic and Applied Basic Research Major Programme of Guangdong Province, China

National Natural Science Foundation of China

Ji Hua Laboratory Project

Publisher

American Vacuum Society

Subject

Surfaces, Coatings and Films,Surfaces and Interfaces,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3