Affiliation:
1. Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
Abstract
Atmospheric-pressure plasma-enhanced spatial atomic layer deposition (PE-s-ALD) is considered a promising technique for high-throughput and low-temperature deposition of ultrathin films for applications where volume and costs are particularly relevant. The number of atmospheric-pressure PE-s-ALD processes developed so far is rather limited, and the fundamental aspects of their growth mechanisms are largely unexplored. This work presents a study of the atmospheric-pressure PE-s-ALD process of Al2O3 using trimethylaluminum [TMA, Al(CH3)3] and Ar–O2 plasma within the temperature range of 80–200 °C. Thin-film analysis revealed low impurity contents and a decreasing growth-per-cycle (GPC) with increasing temperature. The underlying chemistry of the process was studied with a combination of gas-phase infrared spectroscopy on the exhaust plasma gas and optical emission spectroscopy (OES) on the plasma zone. Among the chemical species formed in the plasma half-cycle, CO2, H2O, CH4, and CH2O were identified. The formation of these products confirms that the removal of CH3 ligands during the plasma half-cycle occurs through two reaction pathways that have a different temperature dependences: (i) combustion reactions initiated by O2 plasma species and leading to CO2 and H2O formation and (ii) thermal ALD-like reactions initiated by the H2O molecules formed in pathway (i) and resulting in CH4 production. With increasing temperature, the dehydroxylation of OH groups cause less TMA adsorption which leads to less CO2 and H2O from the combustion reactions in the plasma step. At the same time, the higher reactivity of H2O at higher temperatures initiates more thermal ALD-like reactions, thus producing relatively more CH4. The CH4 can also undergo further gas-phase reactions leading to the formation of CH2O as was theoretically predicted. Another observation is that O3, which is naturally produced in the atmospheric-pressure O2 plasma, decomposes at higher temperatures mainly due to an increase of gas-phase collisions. In addition to the new insights into the growth mechanism of atmospheric-pressure PE-s-ALD of Al2O3, this work presents a method to study both the surface chemistry during spatial ALD to further extend our fundamental understanding of the method.
Subject
Surfaces, Coatings and Films,Surfaces and Interfaces,Condensed Matter Physics
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献