Low-resistivity molybdenum obtained by atomic layer deposition

Author:

van der Zouw Kees1ORCID,van der Wel Bernhard Y.1ORCID,Aarnink Antonius A. I.1,Wolters Rob A. M.1ORCID,Gravesteijn Dirk J.1ORCID,Kovalgin Alexey Y.1ORCID

Affiliation:

1. MESA+ Institute for Nanotechnology, University of Twente , P.O. Box 217, Enschede 7500 AE, The Netherlands

Abstract

A novel atomic layer deposition (ALD) process was developed for low-resistivity molybdenum (Mo) from molybdenum dichloride dioxide (MoCl2O2) and atomic hydrogen (at-H). A wide ALD window of self-limiting growth was observed between 150 and 450 °C. No film deposition occurred with molecular hydrogen (H2), demonstrating the necessity to have at-H to efficiently reduce the MoCl2O2 precursor. At 350 °C and above, the film composition was determined at approximately 95 at. % of Mo and 3.5 at  % of oxygen (O), with trace amounts (i.e., <1 at. %) of carbon (C), chlorine (Cl), hydrogen (H), and nitrogen (N). The growth per cycle (GPC) was roughly 0.022 nm/cycle. No substrate selectivity or pronounced nucleation delay was observed on silicon (Si), silicon dioxide (SiO2), silicon nitride (Si3N4), silicon carbide (SiC), aluminum oxide (Al2O3), hafnium dioxide (HfO2), and low-k dielectric (SiOC). Film uniformity and conformality were ±5% and ±10%, respectively, while resistivity approached a bulk value of 18.6 μ Ω cm at 24 nm. At 250 °C and below, increased levels of oxygen (up to 33 at. % at 150 °C) and chlorine (2.7 at. % at 150 °C) were detected in the film. This trend coincided with an increase in the GPC, a change in optical properties, a decrease in film density and crystallinity, and an increase in resistivity. While self-limiting growth was observed through the entire ALD window of 150–450 °C, the temperature (T) range for depositing low-resistivity Mo deposition was narrower at T ≥ 250 °C.

Funder

Topconsortium voor Kennis en Innovatie

ASM International

Publisher

American Vacuum Society

Subject

Surfaces, Coatings and Films,Surfaces and Interfaces,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3