Affiliation:
1. National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory for Nanotechnology, School of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
Abstract
Understanding the high-temperature behaviors of two-dimensional (2D) transition metal dichalcogenides under different environments will provide a directive guide for the fabrication and application of their nanoelectronic devices. In this study, we investigate the high-temperature properties of chemical vapor deposition grown molybdenum disulfide (MoS2) in different atmospheres through the ex situ and in situ morphological and spectroscopical characterizations. When the MoS2 is exposed to Ar, dry O2, and wet O2 at the temperature of 500, 350, and 300 °C, the etching process starts at the edge and inner regions simultaneously, and the etched trenches are opposite to the outline of the MoS2 triangular shape. We observe a clear redshift of MoS2 in the Raman peak position and the photoluminescence peak position by in situ spectroscopical characterizations as the temperature increases. Moreover, a strong photoluminescence enhancement of 24-fold of MoS2 is observed when exposing to O2 at 300 °C . This should be due to the chemical and physical adsorbed oxygen on the MoS2 surface. Moreover, we find that physical adsorption can be eliminated after vacuum annealing. This study provides a real-time strategy to study the morphology and property evolution of 2D materials at high temperature in different atmospheres. These results will contribute to the applications in future electronic and optoelectronic functional devices of 2D materials.
Funder
National Key Research and Development Program of China
National Natural Science Foundation of China
Fundamental Research Funds for the Central Universities
Natural Science Foundation of Jiangsu Province
Fok Ying Tung Education Foundation
Subject
Surfaces, Coatings and Films,Surfaces and Interfaces,Condensed Matter Physics
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献