Comparison of BCl3, TiCl4, and SOCl2 chlorinating agents for atomic layer etching of TiO2 and ZrO2 using tungsten hexafluoride

Author:

Saare Holger1,Xie Wenyi2ORCID,Parsons Gregory N.12ORCID

Affiliation:

1. Department of Physics, North Carolina State University 1 , Raleigh, North Carolina 27695

2. Department of Chemical and Biomolecular Engineering, North Carolina State University 2 , Raleigh, North Carolina 27695

Abstract

Recent advances in the semiconductor industry have created an exigency for processes that allow to deposit and etch material in conformal matter in three-dimensional devices. While conformal deposition is achieved using atomic layer deposition (ALD), conformal etching can be accomplished by thermal atomic layer etching (ALE) which, like ALD, proceeds via a binary sequence of self-limiting reactions. This study explores ALE of TiO2 and ZrO2 using WF6 as a fluorinating agent, and BCl3, TiCl4, or SOCl2 as a co-reactant. The effect of co-reactant chemistry was studied using atomic force microscopy, in situ ellipsometry, and in vacuo Auger electron spectroscopy measurements along with thermodynamic modeling. All three co-reactants exhibited saturation and etch rates increasing with temperature. At 170 °C, TiO2 can be etched using WF6 with BCl3, TiCl4, or SOCl2, and the etching proceeds at 0.24, 0.18, and 0.20 nm/cycle, respectively. At 325 °C, ZrO2 ALE can occur using these same reactants, proceeding at 0.96, 0.74, and 0.13 nm/cycle, respectively. A higher temperature is needed for ZrO2 ALE versus TiO2 because the ZrCl4 product is less volatile than the corresponding TiCl4. During ZrO2 and TiO2 etching using BCl3 or TiCl4, boron oxide or titanium oxide intermediate layers, respectively, were formed on the surface, and they were subsequently removed by WF6. In contrast, for ALE of TiO2 using SOCl2, a similar intermediate layer is not observed. This study broadens the understanding of co-etchants role during thermal ALE and expands the range of reactants that can be used for vapor etching of metal oxides.

Funder

US National Science Foundation

Publisher

American Vacuum Society

Subject

Surfaces, Coatings and Films,Surfaces and Interfaces,Condensed Matter Physics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3