Mechanical and optical properties of amorphous silicon nitride-based films prepared by electron cyclotron resonance plasma-enhanced chemical vapor deposition

Author:

Ahammou Brahim12ORCID,Bhattacharyya Paramita2ORCID,Levallois Christophe1ORCID,Azmi Fahmida2ORCID,Landesman Jean-Pierre1ORCID,Mascher Peter2ORCID

Affiliation:

1. Univ. Rennes, INSA Rennes, CNRS, Institut FOTON—UMR 6082 1 , F-35000 Rennes, France

2. Department of Engineering Physics and Centre for Emerging Device Technologies, McMaster University 2 , Hamilton, Ontario L8S 4L7, Canada

Abstract

Silicon nitride (SiNx) based films have been recognized as essential dielectric films in the microelectronics and optoelectronics industry due to their desirable properties, such as high electrical insulation, excellent thermal stability, and compatibility with integrated circuit fabrication processes. They are also a potential candidate for fabricating wavelength-selective reflective coatings and surface passivation layers in building-integrated photovoltaics technologies. SiNx-based films are one of the popular choices for antireflective coatings in photovoltaics as well. Recently, SiNx and oxynitride (SiOyNx) based thin film optical filters have been explored to provide distinct color rendering to solar-charged electrical vehicles. Since solar cells have a lifespan of many years and the coating surfaces are substantial, it is essential to produce films with controlled optical and mechanical properties and maintain mechanical integrity against corrosion and wear. This study aims to design a deposition process and optimize minimal parameters for stable plasma conditions during multilayer deposition of SiNx and SiOyNx films using an electron cyclotron resonance plasma-enhanced chemical vapor deposition reactor with SiH4/N2/O2/Ar precursor mixtures at 120 °C. The primary goal was to investigate the influence of gas flow adjustments on the optical and mechanical properties, specifically targeting the refractive index and mechanical properties of the films. We measured the refractive index and the absorption of the films using variable angle spectroscopic ellipsometry. Then, we evaluated the mechanical residual stress ex situ using the wafer curvature measurement method. We have determined the elastic modulus and the hardness of the films using nanoindentation. The experimental results have shown a significant dependence of the optical and mechanical properties on the deposition parameters. To investigate the factors contributing to the intrinsic mechanical stress and to better understand SiNx film degradation mechanisms, we have studied the effect of postdeposition thermal cycling on the properties of the films. Several thermal-cycling experiments from room temperature to 400 °C were performed on different SiNx films, and the results showed an irreversible variation of the mechanical stress toward the tensile stresses caused by delamination of the films, while the refractive index remained unchanged.

Funder

FCRF program

Natural Sciences and Engineering Research Council of Canada

Ontario Research Foundation

Publisher

American Vacuum Society

Subject

Surfaces, Coatings and Films,Surfaces and Interfaces,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3