Role of SiCl4 addition in CH3F/O2 based chemistry for Si3N4 etching selectively to SiO2, SiCO, and Si

Author:

Boulard François1ORCID,Bacquié Valentin1ORCID,Tavernier Aurélien1ORCID,Possémé Nicolas1

Affiliation:

1. University Grenoble Alpes, CEA, LETI , Grenoble F-38000, France

Abstract

Dry etching of amorphous silicon nitride (Si3N4) selectively toward silicon dioxide (SiO2), silicon oxicarbide (SiCO), and crystalline silicon (c-Si) in an inductive coupled plasma reactor using CHF3/O2/He chemistry with SiCl4 addition is studied. Plasma exposure of c-Si, SiO2, and SiCO leads to an oxifluoride deposition. The deposition rate is the same for all these materials and increases linearly with the amount of SiCl4 added. On the other hand, Si3N4 etching is observed at very small amount of SiCl4 added (2 SCCM), while oxide deposition takes place at higher SiCl4 flow (10 SCCM). Quasi-in situ angle resolved x-ray photoelectron spectroscopy investigation shows oxifluoride SiOxFy deposition on c-Si and SiCO, while a thin F-rich reactive layer is observed on Si3N4. The oxidation of the Si3N4 surface with O2 plasma prior to CHF3/O2/He with small SiCl4 addition plasma treatment showed that the oxidation state plays a significant role in the etching/deposition equilibrium. In addition, it is found that oxifluoride deposition on Si3N4 is driven by ion energy, with deposition observed at 0 V substrate bias voltage, while etching is observed for values higher than 150 V. All these results show that a competition takes place between silicon oxifluoride deposition and etching, depending on the substrate material, surface oxidation, and ion energy. Based on the additional optical emission spectroscopy data, we proposed insights to explain the different etching and deposition behaviors observed. It is focused on the crucial role of ion energy and the nitrogen presence in Si3N4 leading to the formation of CN and HCN, helping to get a thinner reactive layer and to evacuate etch by-products on Si3N4 while an oxifluoride buildup on the other materials takes place.

Publisher

American Vacuum Society

Subject

Surfaces, Coatings and Films,Surfaces and Interfaces,Condensed Matter Physics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3