Scanning electron microscope imaging by selective e-beaming using photoelectron beams from semiconductor photocathodes

Author:

Nishitani Tomohiro1,Arakawa Yuta1,Noda Shotaro1,Koizumi Atsushi1,Sato Daiki1,Shikano Haruka1,Iijima Hokuto1,Honda Yoshio2,Amano Hiroshi2

Affiliation:

1. Photo electron Soul Inc., C-TECs No. 208 Furo-cho, Chikusa-ku, Nagoya, Aichi 4648601, Japan

2. Institute of Materials and Systems for Sustainability, Nagoya University Furo-cho, Chikusa-ku, Nagoya, Aichi 4648601, Japan

Abstract

Pulsed electron beams from a photocathode using an InGaN semiconductor have brought selectively scanning technology to scanning electron microscopes, where the electron beam irradiation intensity and area can be arbitrarily selected within the field of view in SEM images. The p-type InGaN semiconductor crystals grown in the metalorganic chemical vapor deposition equipment were used as the photocathode material for the electron beam source after the surface was activated to a negative electron affinity state in the electron gun under ultrahigh vacuum. The InGaN semiconductor photocathode produced a pulsed electron beam with a rise and fall time of 3 ns, consistent with the time structure of the irradiated pulsed laser used for the optical excitation of electrons. The InGaN photocathode-based electron gun achieved a total beam operation time of 1300 h at 15  μA beam current with a downtime rate of 4% and a current stability of 0.033% after 23 cycles of surface activation and continuous beam operation. The InGaN photocathode-based electron gun has been installed in the conventional scanning electron microscope by replacing the original field emission gun. SEM imaging was performed by selective electron beaming, in which the scanning signal of the SEM system was synchronized with the laser for photocathode excitation to irradiate arbitrary regions in the SEM image at arbitrary intensity. The accuracy of the selection of regions in the SEM image by the selective electron beam was pixel by pixel at the TV scan speed (80 ns/pix, 25 frame/s) of the SEM.

Funder

Japan Society for the Promotion of Science London

National Institute of Information and Communications Technology

Publisher

American Vacuum Society

Subject

Materials Chemistry,Electrical and Electronic Engineering,Surfaces, Coatings and Films,Process Chemistry and Technology,Instrumentation,Electronic, Optical and Magnetic Materials

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3