On inference of quantization from gravitationally induced entanglement

Author:

Fragkos Vasileios1ORCID,Kopp Michael12ORCID,Pikovski Igor13ORCID

Affiliation:

1. Department of Physics, Stockholm University, SE-106 91 Stockholm, Sweden

2. Nordita, KTH Royal Institute of Technology and Stockholm University, Hannes Alfvéns väg 12, SE-106 91 Stockholm, Sweden

3. Department of Physics, Stevens Institute of Technology, Hoboken, New Jersey 07030, USA

Abstract

Observable signatures of the quantum nature of gravity at low energies have recently emerged as a promising new research field. One prominent avenue is to test for gravitationally induced entanglement between two mesoscopic masses prepared in spatial superposition. Here, we analyze such proposals and what one can infer from them about the quantum nature of gravity as well as the electromagnetic analogues of such tests. We show that it is not possible to draw conclusions about mediators: even within relativistic physics, entanglement generation can equally be described in terms of mediators or in terms of non-local processes—relativity does not dictate a local channel. Such indirect tests, therefore, have limited ability to probe the nature of the process establishing the entanglement as their interpretation is inherently ambiguous. We also show that cosmological observations already demonstrate some aspects of quantization that these proposals aim to test. Nevertheless, the proposed experiments would probe how gravity is sourced by spatial superpositions of matter, an untested new regime of quantum physics.

Funder

Swedish Research Council

HORIZON EUROPE European Research Council

Branco Weiss Fellowship – Society in Science

Publisher

American Vacuum Society

Subject

Electrical and Electronic Engineering,Computational Theory and Mathematics,Physical and Theoretical Chemistry,Computer Networks and Communications,Condensed Matter Physics,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3