Gravito-diamagnetic forces for mass independent large spatial superpositions

Author:

Zhou RunORCID,Marshman Ryan JORCID,Bose SougatoORCID,Mazumdar AnupamORCID

Abstract

Abstract Creating a massive spatial quantum superposition, such as the Schrödinger cat state, where the mass and the superposition size within the range 10−19 − 10−14 kg and Δx ∼ 10 nm − 100 μm, is a challenging task. The methods employed so far rely either on wavepacket expansion or on a quantum ancilla, e.g. single spin dependent forces, which scale inversely with mass. In this paper, we present a novel approach that combines gravitational acceleration and diamagnetic repulsion to generate a large spatial superposition in a relatively short time. After first creating a modest initial spatial superposition of 1 μm, achieved through techniques such as the Stern–Gerlach (SG) apparatus, we will show that we can achieve an ∼102−103 fold improvement to the spatial superposition size (1 μm → 980 μm) between the wave packets in less than 0.02 s by using the Earth’s gravitational acceleration and then the diamagnetic repulsive scattering of the nanocrystal, neither of which depend on the object mass. Finally, the wave packet trajectories can be closed so that spatial interference fringes can be observed. Our findings highlight the potential of combining gravitational acceleration and diamagnetic repulsion to create and manipulate large spatial superpositions, offering new insights into creating macroscopic quantum superpositions.

Funder

Centre of Excellence for Quantum Computation and Communication Technology

EPSRC

China Scholarship Council

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3