Impact of the growth environment in inductively coupled plasma on the synthesis and morphologies of carbon nanohorns

Author:

Casteignau Fanny12ORCID,Aissou Taki1,Menneveux Jérôme1,Veilleux Jocelyn1,Martel Richard3ORCID,Braidy Nadi12

Affiliation:

1. Plasma, Process and Integrations of Nanomaterial (2PIN) Laboratory, Department of Chemical Engineering and Biotechnological Engineering, Université de Sherbrooke, 2500 Boulevard de l’Université, Sherbrooke J1K 2R1, Québec, Canada

2. Institut Interdisciplinaire d'Innovation Technologique (3IT), 3000 Boulevard Université, Sherbrooke J1K 0A5, Québec, Canada

3. Département de Chimie, Université de Montréal, 2900 Boulevard Edouard-Montpetit, Montréal H3T 1J4, Québec, Canada

Abstract

The fabrication of carbon nanohorns (CNHs) from a methane precursor with argon in an inductively coupled plasma was recently demonstrated with a high production rate of ∼20 g/h by Casteignau et al. [Plasma Chem. Plasma Process. 42, 465 (2022)]. The presence of a promotor gas such as hydrogen was found to be important for the growth of CNHs, but the mechanisms at play remain unclear. Here, we study the impact of different promotor gases by replacing hydrogen with nitrogen and helium at different promotor:precursor (Pm:Pr) ratios, X:CH4 = 0.3–0.7 (X = H2 or N2, Ar, and He), and global flow rates [Formula: see text] and 3.4 slpm. The nature of the promotor gas is shown to directly influence the morphology and the relative occurrence of CNHs, graphitic nanocapsules (GNCs), and graphene nanoflakes. Using quantitative transmission electron microscopy, we show that CNHs are favored by an X:CH4 = 0.5, preferably with X = He or N2. With a lower total flow rate (1.7 slpm) of N2, even larger production rates and higher selectivity toward CNHs are achieved. Optical emission spectroscopy was used to probe the plasma and to demonstrate that the nature promotor gas strongly modulates the C2 density and temperature profile of the plasma torch. It is shown that CNHs nucleation is favored by high C2 density at temperatures exceeding 3500 K localized at the exit-end of the nozzle, creating a reaction zone with extended isotherms. H2 favors CH4 dissociation and creates a high C2 density but cools the nucleation zone, which leads to structures with a strong graphitic character such as GNCs.

Funder

Canada Research Chairs

Natural Sciences and Engineering Research Council of Canada

Publisher

American Vacuum Society

Subject

Materials Chemistry,Electrical and Electronic Engineering,Surfaces, Coatings and Films,Process Chemistry and Technology,Instrumentation,Electronic, Optical and Magnetic Materials

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3