Measurements of ion fluxes in extreme ultraviolet-induced plasma of new EUV-beam-line 2 nanolithography research machine and their applications for optical component tests

Author:

van Veldhoven J.1ORCID,Wu C.-C.1ORCID,Storm A. J.1ORCID,van Putten M.1ORCID,Meijlink J. R.1ORCID,Ushakov A. G.1ORCID

Affiliation:

1. TNO , P.O. Box 155, 2600 AD Delft, The Netherlands

Abstract

In modern extreme ultraviolet (EUV) lithography machines, sensitive optical components, such as multilayer mirrors and photomasks, may be affected by plasma interactions. The new 13.5 nm EUV-beam-line 2, designed to provide accelerated tests for next generation lithography, is used to investigate EUV-induced plasma phenomena. First systematic measurements of ion fluxes produced in EUV-induced hydrogen plasma are reported, with operating conditions including 5 and 20 Pa gas pressure, 3 kHz EUV pulse repetition rate, and 4.2 W total EUV beam power produced in a 10–15 ns EUV pulse. Space- and time-resolved distributions of ion fluxes and ion energies were measured using a retarding-field ion energy analyzer mounted next to the EUV beam. Typical ion energies were in the range of 1–8 eV and typical ion fluxes were in the range of 2–8 × 1017 ions m−2 s−1. The obtained ion fluxes are applied in a photomask lifetime test to understand the material effects after an EUV exposure.

Funder

Topconsortium voor Kennis en Innovatie

Publisher

American Vacuum Society

Subject

Materials Chemistry,Electrical and Electronic Engineering,Surfaces, Coatings and Films,Process Chemistry and Technology,Instrumentation,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3