Growth of ultrathin Bi2Se3 films by molecular beam epitaxy

Author:

Nasir Saadia1ORCID,Smith Walter J.2ORCID,Beechem Thomas E.2ORCID,Law Stephanie13ORCID

Affiliation:

1. Department of Physics and Astronomy, University of Delaware, 217 Sharp Lab, 204 The Green, Newark, Delaware 19716

2. School of Mechanical Engineering and Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907

3. Department of Materials Science and Engineering, University of Delaware, 201 DuPont Hall, 127 The Green, Newark, Delaware 19716

Abstract

[Formula: see text] is a widely studied 3D topological insulator having potential applications in optics, electronics, and spintronics. When the thickness of these films decreases to less than approximately 6 nm, the top and bottom surface states couple, resulting in the opening of a small gap at the Dirac point. In the 2D limit, [Formula: see text] may exhibit quantum spin Hall states. However, growing coalesced ultrathin [Formula: see text] films with a controllable thickness and typical triangular domain morphology in the few nanometer range is challenging. Here, we explore the growth of [Formula: see text] films having thicknesses down to 4 nm on sapphire substrates using molecular beam epitaxy that were then characterized with Hall measurements, atomic force microscopy, and Raman imaging. We find that substrate pretreatment—growing and decomposing a few layers of [Formula: see text] before the actual deposition—is critical to obtaining a completely coalesced film. In addition, higher growth rates and lower substrate temperatures led to improvement in surface roughness, in contrast to what is observed for conventional epitaxy. Overall, coalesced ultrathin [Formula: see text] films with lower surface roughness enable thickness-dependent studies across the transition from a 3D-topological insulator to one with gapped surface states in the 2D regime.

Funder

Basic Energy Sciences

National Science Foundation

Division of Materials Research

Publisher

American Vacuum Society

Subject

Surfaces, Coatings and Films,Surfaces and Interfaces,Condensed Matter Physics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Growth of ultrathin Bi2Se3 films by molecular beam epitaxy;Journal of Vacuum Science & Technology A;2023-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3