Polymer brushes for friction control: Contributions of molecular simulations

Author:

Abdelbar Mohamed A.1ORCID,Ewen James P.2ORCID,Dini Daniele2ORCID,Angioletti-Uberti Stefano1ORCID

Affiliation:

1. Department of Materials, Imperial College London 1 , London SW7 2AZ, United Kingdom

2. Department of Mechanical Engineering, Imperial College London 2 , London SW7 2AZ, United Kingdom

Abstract

When polymer chains are grafted to solid surfaces at sufficiently high density, they form brushes that can modify the surface properties. In particular, polymer brushes are increasingly being used to reduce friction in water-lubricated systems close to the very low levels found in natural systems, such as synovial joints. New types of polymer brush are continually being developed to improve with lower friction and adhesion, as well as higher load-bearing capacities. To complement experimental studies, molecular simulations are increasingly being used to help to understand how polymer brushes reduce friction. In this paper, we review how molecular simulations of polymer brush friction have progressed from very simple coarse-grained models toward more detailed models that can capture the effects of brush topology and chemistry as well as electrostatic interactions for polyelectrolyte brushes. We pay particular attention to studies that have attempted to match experimental friction data of polymer brush bilayers to results obtained using molecular simulations. We also critically look at the remaining challenges and key limitations to overcome and propose future modifications that could potentially improve agreement with experimental studies, thus enabling molecular simulations to be used predictively to modify the brush structure for optimal friction reduction.

Funder

Engineering and Physical Sciences Research Council

Royal Academy of Engineering

Publisher

American Vacuum Society

Subject

General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Materials Science,Biomaterials,General Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Glass transition temperature of (ultra-)thin polymer films;The Journal of Chemical Physics;2023-08-18

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3