Glass transition temperature of (ultra-)thin polymer films

Author:

Hsu Hsiao-Ping1ORCID,Kremer Kurt1ORCID

Affiliation:

1. Max-Planck-Institut für Polymerforschung , Ackermannweg 10, Mainz 55128, Germany

Abstract

The glass transition temperature of confined and free-standing polymer films of varying thickness is studied by extended molecular dynamics simulations of bead–spring chains. The results are connected to the statistical properties of the polymers in the films, where the chain lengths range from short, unentangled to highly entangled. For confined films, perfect scaling of the thickness-dependent end-to-end distance and radius of gyrations normalized to their bulk values in the directions parallel and perpendicular to the surfaces is obtained. In particular, the reduced end-to-end distance in the perpendicular direction is very well described by an extended Silberberg model. For bulk polymer melts, the relation between the chain length and Tg follows the Fox–Flory equation. For films, no further confinement induced chain length effect is observed. Tg decreases and is well described by Keddie’s formula, where the reduction is more pronounced for free-standing films. It is shown that Tg begins to deviate from bulk Tg at the characteristic film thickness, where the average bond orientation becomes anisotropic and the entanglement density decreases.

Funder

European Research Council

Publisher

AIP Publishing

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3