Enhanced bactericidal performance of textiles through compound antimicrobial agents

Author:

Huang Yi1ORCID,Li Ying2ORCID,Chen Kai-Bo1ORCID,Zhang Hang1ORCID

Affiliation:

1. Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Zhejiang University School of Medicine 1 , Hangzhou 310000, China

2. Zhejiang Hexin New Material Co., Ltd. 2 , Jiaxing 314000, China

Abstract

This study aims to explore the essential functional requirements associated with controlling the proliferation of microbes in the domain of textiles used in public health areas. Herein, three antimicrobial agents, specifically iodopropylbutylcarbamate (IPBC), 1-hydroxypyridine-2-thioketone zinc (ZPT), and 2-octyl-3-isothiazolinone (OIT), were chosen for fabric finishing based on their notable effectiveness, minimal toxicity, cost-efficiency, and chemical stability. Utilizing Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) as representative bacterial strains, the Minimum Inhibitory Concentration (MIC50) of individual and combined antimicrobial agents was measured, and their antimicrobial effectiveness was rigorously evaluated. Concurrently, the antimicrobial effectiveness, whiteness, and mechanical durability of the fabric following antimicrobial treatment were thoroughly examined. The results demonstrate that some combinations of the three antimicrobial agents elicit additive effects on both S. aureus and E. coli. Notably, at an equivalent ratio of IPBC, ZPT, and OIT and a total concentration of 0.2 wt. %, the inhibition rates against both bacterial strains surpass 99%. Upon application to nylon fabric, the treated material demonstrates significant antimicrobial properties, with minimal reduction observed in the whiteness and tensile strength of the treated nylon. This study provides practicable strategies relevant to the production of textiles endowed with antimicrobial properties.

Publisher

American Vacuum Society

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3