Clustering of Brain Tumors in Brain MRI Images based on Extraction of Textural and Statistical Features

Author:

Samadi Ghoushchi Hamed,Pourasad YaghoubORCID

Abstract

<p>The purpose of this article is to investigate techniques for classifying tumor grade from magnetic resonance imaging (MRI). This requires early diagnosis of the brain tumor and its grade. Magnetic resonance imaging may show a clear tumor in the brain, but doctors need to measure the tumor in order to treat more or to advance treatment. For this purpose, digital imaging techniques along with machine learning can help to quickly identify tumors and also treatments and types of surgery. These combined techniques in understanding medical images for researchers are an important tool to increase the accuracy of diagnosis. In this paper, classification methods for MRI images of tumors of the human brain are performed to review the astrocytoma-containing glands. Methods used to classify brain tumors, including preprocessing, screening, tissue extraction, and statistical features of the tumor using two types of T<sub>1</sub>W and Flair brain MRI images and also the method of dimensionality reduction of extracted features and how to train them in classification are also explained. Determine the tumor area using three classification of Fuzzy Logic <em>C</em><em>-</em><em>Means</em><em> </em>Clustering (FCM), Probabilistic Neural Networks (PNN) and Support Vector Machines (SVM). In this paper, simulated and real MRI images are used. The results obtained from the proposed methods in this paper are compared with the reference results and the results show that the proposed approach can increase the reliability of brain tumor diagnosis.</p>

Publisher

International Association of Online Engineering (IAOE)

Subject

General Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. 3D Pre-Processing Algorithm for MRI Images of Different Stages of AD;International Journal of Online and Biomedical Engineering (iJOE);2023-10-25

2. An Efficient Framework to Protect Medical Images;International Journal of Online and Biomedical Engineering (iJOE);2022-03-22

3. Analysis of Physicochemical Natures of Modern Artifacts in MRI;International Journal of Online and Biomedical Engineering (iJOE);2022-03-08

4. A Features Fusion Approach for Neonatal and Pediatrics Brain Tumor Image Analysis Using Genetic and Deep Learning Techniques;International Journal of Online and Biomedical Engineering (iJOE);2021-11-15

5. Medical Image Segmentation Using a Combination of Lattice Boltzmann Method and Fuzzy Clustering Based on GPU CUDA Parallel Processing;International Journal of Online and Biomedical Engineering (iJOE);2021-11-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3