Medical Image Segmentation Using a Combination of Lattice Boltzmann Method and Fuzzy Clustering Based on GPU CUDA Parallel Processing

Author:

Boli Suban Ignasius,Suyoto SuyotoORCID,Pranowo PranowoORCID

Abstract

The rapid development of computer technology has had a significant influence on advances in medical science. This development concerns segmenting medical images that can be used to help doctors diagnose patient diseases. The boundary between objects contained in an image is captured using the level set function. The equation of the level set function is solved numerically by combining the Lattice Boltzmann (LBM) method and fuzzy clustering. Parallel processing using a graphical processing unit (GPU) accelerates the execution of the segmentation process. The results showed that image segmentation with a relatively large size could be done quickly. The use of parallel programming with the GPU can accelerate up to 39.22 times compared to the speed of serial programming with the CPU. In addition, the comparisons with other research and benchmark data show consistent results.

Publisher

International Association of Online Engineering (IAOE)

Subject

General Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3