BIOMEDICAL IMAGE SEGMENTATION BASED ON DEEP LEARNING ALGORITHMS

Author:

NIU MIAOHE1ORCID,WANG XUELI2ORCID

Affiliation:

1. Beijing-Dublin International College, Beijing University of Technology, Beijing 100020, P. R. China

2. Faculty of Science, Beijing University of Technology, Beijing 100020, P. R. China

Abstract

A new biomedical image segmentation method based on deep learning networks has been constructed. Under the framework of deep learning, a dual-branch deep learning network structure was designed to perform average pooling and maximum pooling on input image data, respectively. The results of pooling processing are sent to multi-layer convolution for further processing, where 2D convolution and dilated convolution are used, respectively, and the more flexible SoftMax function is selected for activation processing. Multiple fully connected processes were used between each link and between two branches to form better fusion criteria. The experimental results show that our method has a more ideal segmentation effect in both homologous and heterogeneous training segmentation experiments, with AC, SE, and SP indicators reaching over 95%, 84%, and 99%, respectively.

Publisher

World Scientific Pub Co Pte Ltd

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3