Design and Analysis of a Relational Database for Behavioral Experiments Data Processing

Author:

Kraleva Radoslava StankovaORCID,Kralev Velin SpasovORCID,Sinyagina Nina,Koprinkova-Hristova PetiaORCID,Bocheva NadejdaORCID

Abstract

In this paper, the results of a comparative analysis between different approaches to experimental data storage and processing are presented. Several studies related to the problem and some methods for solving it have been discussed. Different types of databases, ways of using them and the areas of their application are analyzed. For the purposes of the study, a relational database for storing and analyzing a specific data from behavioral experiments was designed. The methodology and conditions for conducting the experiments are described. Three different indicators were analyzed, respectively: memory required to store the data, time to load the data from an external file into computer memory and iteration time across all records through one cycle. The obtained results show that for storing a large number of records (in the order of tens of millions of rows), either dynamic arrays (stored on external media in binary file format), or an approach based on a local or remote database management system can be used. Regarding the data loading time, the fastest approach was the one that uses dynamic arrays. It outperforms significantly the approaches based on a local or remote database. The obtained results show that the dynamic arrays and the local data sets approaches iterated much faster across all data records than the remote database approach. The paper concludes with proposal for further developments towards using of web services.

Publisher

International Association of Online Engineering (IAOE)

Subject

General Engineering

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3